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Abstract

• The work deals with a family of nonlinear differential equations
of Lane–Emden–Fowler type. The original Lane–Emden equation
was used to model the thermal behavior of a spherical cloud of gas
within the framework of the classical thermodynamics. Slightly
modified, it describes phase transitions in critical thermodynamic
systems of spherical geometry and other physical phenomena.

• The aim of the current work is to obtain approximate analytical
solutions of the regarded equations. The problem is re-formulated
in terms of nonhomogeneous nonlinear Volterra integral equations
of the second kind . The solutions are sought by He’s homotopy
perturbation method and Picard’s method of successive approxima-
tions .
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Basic equations
The original Lane–Emden and Emden–Fowler equations

• The Lane–Emden equation, see [Lane, 1870], [Emden, 1907] is
one of the basic equations in the theory of stellar structure. It
has been the focus of many studies. This equation describes the
temperature variation of a spherical gas cloud under the mutual
attraction of its molecules within the framework of the classical
thermodynamics [Chandrasekhar, 1939]. It also describes the vari-
ation of density as a function of the radial distance for a polytrope
[Novotny, 1972]. The equation has the form

d2y(x)

dx2
+

2

x

dy(x)

dx
+ λym(x) = 0, λ ∈ R, m = 0, 1, 2, . . . (1)

y(0) = 1,
dy

dx

∣∣∣∣
x=0

= 0

• Exact solutions to Eq. (1) are known only for m = 0, 1, 5.
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Basic equations
The original Lane–Emden and Emden–Fowler equations

• A two-parameter generalization of the Lane–Emden equation (1),
namely

d2y(x)

dx2
+

2

x

dy(x)

dx
+ xµ−2ym(x) = 0, m = 0, 1, 2, . . . (2)

was introduced and systematically studied by [Fowler, 1930] and is
currently known as the Emden–Fowler equation (the Lane–Emden
equation corresponds to the particular case µ = 2).

• Two integrable classes of the Emden–Fowler equation (2) with
applications in astrophysics and cosmology were found recently,
see [Mancas and Rosu, 2018].

• There are many articles in which the Emden–Fowler equation has
been solved numerically using different methods and techniques.
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Basic equations
A family of generalized Lane–Emden–Fowler equations

• In this work, we consider the generalized Lane–Emden–Fowler
equations of the form

d2y

dx2
+
k

x

dy

dx
+ xνf(y) = 0, k, ν ∈ R (3)

where f(y) is a function of the dependent variable y.

• Case 1.0. Let k = 0, ν = 0, then Eq. (3) takes the form

d2y

dx2
+ f(y) = 0. (4)

Obviously, this equation possesses a first integral and hence it is
integrable by quadratures. If, moreover, f(y) is a polynomial of
third degree, then one can write down the solution of Eq. (4) in
explicit analytic form following [Whittaker & Watson, 1927].
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Basic equations
A family of generalized Lane–Emden–Fowler equations

• Case 1.1. k = ν = 0, x := s, y := κ, f(κ) = (1/2)κ3 − µκ − σ,
then Eq. (3) takes the form

d2κ

ds2
+

1

2
κ3 − µκ− σ = 0 (5)

and describes the cylindrical equilibrium shapes of fluid lipid mem-
branes [Vassilev et al., 2008], elastic rings [Djondjorov et al., 2011],
and carbon nanotubes [Mladenov et al., 2013] subjected to uniform
hydrostatic pressure. Here s is the arclength of the generating plane
curve, κ is its curvature, µ represents the tensile stress or chemical
potential, σ represents the hydrostatic pressure.

• Similar equations of this type are studied in Chapter 3 ”Analytical
Representations of Willmore & Generalized Willmore Surfaces” of
[Toda, 2018] ”Willmore Energy and Willmore Conjecture”.
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Willmore Energy and Willmore Conjecture
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Basic equations
A family of generalized Lane–Emden–Fowler equations

• Case 1.2. k = ν = 0, x := ζ, y := φ, f(φ) = −2φ3−τφ+(1/2)η,
then Eq. (3) becomes

d2φ

dζ2
− 2φ3 − τφ+

1

2
η = 0 (6)

and describes, within the standard φ4 Ginzburg-Landau theory of
phase transitions, the order parameter φ at the position ζ ∈ (0, L)
perpendicular to the bounding planes of a thin film of thickness L;
τ and η represent the temperature and ordering field.

• This equation subject to several tips of boundary conditions, e.g.,
(+,+), (+,−), etc., has been studied in a series of recent works by
Dantchev, Vassilev and Djondjorov where the interested reader can
find exact analytical solution for the respective order parameter
profiles, Casimir forces, local and total susceptibilities, etc.
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Some papers
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Basic equations
A family of generalized Lane–Emden–Fowler equations

• Case 2.1. k = d− 1, ν = 0, x := r, y := φ, f(φ) as in Case 1.2,
then Eq. (3) reads

d2φ

dr2
+
d− 1

r

dφ

dr
− 2φ3 − τφ+

1

2
η = 0 (7)

and describes, within the foregoing φ4 Ginzburg-Landau theory cast
in spherical co-ordinates (r, θ, ϕ), the order parameter φ, which is
assumed to depend only on the radial co-ordinate r, at the position
r > 0 normal to the bounding spheres of a film of sphere geometry;
as before, τ and η represent the temperature and ordering field.

• Within the framework of the regarded theory, d is the dimension
of a hypersphere, which is of one dimension less than that of the
space itself. Actually, the most interesting cases are d = 3 and
d = 4.
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Basic equations
Representation via Volterra integral equations

• The generalized Lane–Emden–Fowler equation (3) , i.e.

d2y

dx2
+
k

x

dy

dx
+ xνf(y) = 0, k, ν ∈ R (8)

is equivalent, except for the case k = 1, to the following nonlinear
nonhomogeneous Volterra integral equation of the second kind

y(x) = a+ b x1−k +
1

k − 1

∫ x

c

(
x1−ksk−ν − sν+1

)
f (y (s)) ds, (9)

where a, b, c ∈ R are constants to be specified by the imposed initial
and/or boundary conditions using also the expression

dy(x)

dx
= b (1− k)x−k − x−k

∫ x

c

sk+νf (y (s)) ds (10)

for the derivative of the sought function y(x) following from (9).
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Application of homotopy perturbation method
Statement of the problem

• The integral equation (9) can be written in the form

L[y] = 0,

L[y] = y(x)− a− bx1−k − 1

k − 1

∫ x

c

(
x1−ksk−ν − sν+1

)
f (y (s)) ds

and solved using He’s homotopy perturbation method [He, 1999].

• In general, HPM assumes to define a homotopy function/operator

H(y, p) = (1− p)F [y] + pL[y] = 0, p ∈ [0, 1], (11)

where F [y] = H(y, 0) is a function/operator with known solution.
Then, increasing monotonically the parameter p from zero to one,
to deform continuously a solution y0(x) of the equation F [y] = 0
to a solution of the equation L[y] = H(y, 1) = 0.
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Application of homotopy perturbation method
The solution procedure

• Within the HPM [He, 1999] the solution of equation H(y, p) = 0
is sought as a power series in the homotopy parameter p, i.e.

y(x, p) = y0 (x) + py1 (x) + p2y2 (x) + · · · , (12)

where, as assumed above, y0 (x) is a known solution of the equation
F [y] = 0. The functions y1 (x) , y2 (x) , . . . are to be determined in
the following way.

I Step 1. Choose the function/operator F [y] – the ”starting point”.
I Step 2. Substitute expression (12) into Eq. (11) for the homotopy
function.

I Step 3. Expand (if necessary) the nonlinearities as power series
in the homotopy parameter p about p = 0.

I Step 4. Set the coefficients at pn, n = 0, 1, 2, . . . to zero.
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Application of homotopy perturbation method
An example from φ4 Ginzburg-Landau theory of phase transitions

• Case 2.1.1. k = 3, ν = 0, x := r, y := φ, f(φ) – as in Case 1.2,
then Eq. (3) reads

d2φ

dr2
+

3

r

dφ

dr
− 2φ3 − τφ+

1

2
η = 0 (13)

and can be represented by the following Volterra integral equation
of the second kind

L[φ] = φ(r)− a− b r−2− 1

2

∫ r

c

s
(
r−2s2 − 1

)
f (φ (s)) ds = 0. (14)

• We shall assume that the initial conditions are of the form

φ(0) = a,
dφ

dr

∣∣∣∣
r=0

= 0 (15)

and, accordingly, b = c = 0.
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Application of homotopy perturbation method
An example from φ4 Ginzburg-Landau theory of phase transitions

• We choose the ”starting point” to be F [φ] = φ(r) − a, and use
the following homotopy operator

H(φ, p) = (1− p)F [φ] + pL[φ] = 0. p ∈ [0, 1], (16)

• The solution of equation H(φ, p) = 0 is sought in the form

φ(r, p) = φ0 (r) + p φ1 (r) + p2φ2 (r) + · · · , (17)

where φ0(r) = a since this is the solution of equation F [φ] = 0.

• Substituting (17) into equation (16) and equating the coefficients
at pn, n = 0, 1, 2, . . . to zero, we have obtained the functions
φ1 (r) , . . . , φ5 (r) performing symbolic computation with Wolfram
Mathematicar9.

• The computation took 22 sec. on a PS of i7 CPU, 32 GB RAM.
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Application of Picard’s method

• The solution of the regarded Volterra integral equation (14), i.e.

φ(r) = a+
1

2

∫ r

0

s
(
r−2s2 − 1

)
f (φ (s)) ds = 0. (18)

can be sought using Picard’s method of successive approximations
(see, e.g., [Tricomi, 1957]) as the limit of a sequence {ϕj(r)} of
functions whose first element is the given function ϕ0(r) = a, the
other elements being calculated by the recurrence formula

ϕj+1(r) = a+
1

2

∫ r

0

s
(
r−2s2 − 1

)
f (ϕj (s)) ds = 0. (19)

• This sequence converges under some reasonable assumptions
about the properties of the function f (φ (s)).

• Performing symbolic computation with Wolfram Mathematicar9
again on the same PS, we have obtained (after almost 5 hours) the
functions ϕ1 (r) , . . . , ϕ5 (r).
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