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1. The (141)-dimensional Schrédinger-Maxwell-Bloch
equation

Optical soliton propagation in fibres with resonant and erbium-doped
systems is governed by the coupled systems of the SMBE.
The (1+1)-dimensional Schrodinger-Maxwell-Bloch equation (SMBE)

has form
iq: + qxx +2|q|*q — 2ip = 0, (1)
px — 2iwop —21q = 0, (2)
x+ap" +q"p=0, (3)

where g, p are complex variables functions, and # is a real variable
function, wq is a real constant. This (1+1)-dimensional SMBE is
integrable are given by ISP.
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1.1 Lax representation of the (1+1)-dimensional SMBE

The corresponding Lax representation of equations (1)-(3) reads as

Y, = UY, (4)
Y, = VY, (5)

where ¥ = (‘I’l,‘Pg)T is vector eigenfunction and U, V are matri-
ces, depending on the complex eigenvalue parameter A:

_(—iA g\ _ .
U—<_q* I_/\):—I)L(T3—|—U0, (6)

([ iA? i/\q> (Iql2 ax > i ( " —p>
V=il. . ) + X + _ =
<'Aq —in?) T\ —lalP) T At wo \=p

=A%V, + iAV4 + iV, ' v, (7
I >+ 1+’0+)\+w0 1. (7)
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1.2.The Darboux transformation.

The Darboux transformation is very efficient for construction of soli-
ton solutions. Based on the Darboux transformation for AKNS sys-
tem, we consider the following transformation of the SMBE

YU = TY=QAI-M)Y, (8)

where ‘I’m, Y are eigenfunctions, T is the Darboux matrix, M and
| matrices have the form

o m1 m (10
M_<m21 m22>' I_<0 1>.
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Substituting (8) into the Lax pair (4)-(5) we obtain expressions for
wli]

pul = Uttt (9)

1

g = vyl (10)
where Ul and VI depend on q[l],p[l],iy[l] and A, respectively. In
order to hold the equations (9) and (10), T is the Darboux matrix
and must satisfy the next equalities

T.+7TU = UMNT, (11)

T.+Tv = VviT, (12)
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Finally, we have DT of the SMBE:

gt = g+2mp, (13)
m_ Ly 2 2 .
T =0 [licwo + mua|* — [m12| %)y — pmi(iwwo + mu1)—
—p mz(iwo + myy)],  (14)
1 . . :
P[ = E [p(’WO + '7”’11)2 —p m%z + 27]m12(1w0 + mll)] , (15)
Here symbol [] has form

= det(M+ ICU()/) = —wg -+ in(mll + mfl) + |m11|2 + |m12|2.
(16)
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Having the explicit form the DT (13)-(15) of the SMBE, we can
construct exact solutions. To get one-soliton solutions we assume
trivial seed solutions as

g=p=0 =1 (17)

Then the corresponding associated linear system takes the form

Y, = —iAY, (18)

Yo = iAYy, (19)
= [ —2iA2 / 2

1if]_t ( iA + /\+a)0) Tl, ( 0)
Y, = [(2iA%— i b4 21

2t ( ! /\+Cd0> 2 ( )
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This system admits the following exact solutions

. 1 Xo +i
— 2, + X0 Yo
P11 = exp [A1x+<:A1+Al+in>t+ 5 ] (22)

. X0+ ivo | .
ll]21 = exp |:—/\]_X - (I/\% + }\1_|_,w0> t— T + IZ:| (23)
and xg, Yo, z and wq are real constants. Here Ay = a1 + iby
(al, b1 € R).
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Then the one-soliton solution of (1+1) dimensional SMBE is derived

as
q[l] = 2aysech [X| exp [iy — iz],
Pl = 2, sech?[%] (a1 sinh[%] + i (by +2wo) cosh[x]) expily — 2.
3% + (bl + wo)
2 h2 c
gl =1-2— aysech® (x| .
aT + (bl + (Uo)

where
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2. The fundamental form.

2.1.The first fundamental form for the (141)- dimensional
SMBE.

In general, the first and second fundamental forms are
I = g;jdxidxj, (24)

Il = bjdx'dx/, (25)

here gj;, bjj are matrices

w=(r ¢) w=(7 J) @9
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Position vector is
F: (rl,rg,r3), (27)

and normal to the surface is
= (n, na, n3), 7= 1. (28)
Using Sym-Tafel formula
r=oto,, (29)
we can get position matrices

r=®U®, r=>1V,o. (30)
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The fundamental forms can be presented through position and nor-
mal vectors:

| = dr - dr = Pdx? + 27, Frdxdt + F2dt?, (31)

or
| = Edx?* + 2Fdxdt + Gdt?, (32)
Il = —dn-dr = (- Fe) dx® +2 (i - Fee) dxdt 4 (7 - ) dt?, (33)

or
Il = edx? 4 2fdxdt + gdt?. (34)
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Relations between derivations of vector and matrix form of r with

respect to x and t:

NI =N

—tr(rere) .

Now, we obtain the necessary quantities

~
+ROX N

Ixrt
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O Ui,
O 1V2o,
O MU,V .

(35)
(36)

(37)

(38)
(39)
(40)
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Now we find traces of (38) - (40)

tr(rf) = -2, (41)
2 2
tr(r?) = =2 16A% +4|q|> + -+ lpl” Z
(/\—|—(Uo)
2i 8Ay
+— = Gp—qp)+ ——= |, 42
(A4 wp)? ( ) (/\+w0)2) (42)

tr(UyVy) = —2 <4A + M) . (43)
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Finally, we get the first fundamental form for (1+1)-dimentional

SMBE:
2 2
| = dx®+2 16A2+4]ql2+L|p‘4+
()\—i—wo)
i (gp— qp) + 4
o AP =GPV TN ey (a1 a2 (4a)
(A + wo) (A + wo)
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2.2.The second fundamental form for the (141)- dimensional
SMBE.

Using Sym-Tafel formula (29) we can find the next

e = ©71[Uy, U] @, (45)
e = ®1[Uy, V]®, (46)
e = ® [V, V] (47)

But a normal to surface can be calculated by formula

e O L[Uy, V)] D (48)

%tr([UA, VA]2>
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Relations between derivations of vector and matrix form of r with
respect to x and t:

- - ]-

n:ry = §tr
ﬁ'F;(t == Etr
ﬁ'F;_-t = Etr

(n : rxx) '
(” : rxt) '

(n-re).

(49)
(50)

(51)
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Traces are determined by the next form:

tr(n-rw) = tr([Uy, VaJ (U ]) (52)

\/éfl’ [U)u VA

tr(n-ne) = U V]l V]), (53)

Ser([un vaP)

tr(n-rg) = tr ([Un, Yal Va, V]) (54)

\/étr ([UA, VA]2>
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The second fundamental form (33) takes the form

Il = —21;1 {adx® + 2Bdxdt + ydt*} (55)
where
w = tr ([Uy, U] [Ur, i]), (56)
B =tr([Ur, V][Ux, Va]), (57)
v = tr([Va, V] [Ur, Vi), (58)
p=y/5tr(on ), (59)
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3. Area of surface for the (1+1)- dimensional SMBE.

Surface's area is given in the form

S://\/dedt://\a/\mdxdt, (60)

where o .
g = det(gjj) = det <_,rX_, rX_'Qrt> : (61)

-t If
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Taking into account (45), we get

5://,/itr{[UA,U]}2dxdt (62)

So we can write the surface area using Lax pairs.

[Uy, U] = —iA[os, Up] = —2i (2 g) , (63)

U, U =4 (‘%’2 0 ) , (64)

tr ([UA, U]2) = 8[q2. (65)
Finally, we get

5= 2// g2 dxdt (66)
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4. Christoffel symbols

The Gauss equations associated with a surface are

Fox = FLFX + rfll_"t + en, (67)

P = Tipf + T5o7; + £, (68)

ot = Dol + T5,7 + g (69)

The F}k in (71)-(73) are the usual Christoffel symbols given by the
relations ,
; gll

k= (&t &ij — &jkt) (70)
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The Gauss equations associated with a surface are

21x Ui
rh=—" _(ar+—" |, 71
H A(/\+wo)2< (/\+w0)2> (71)

21 x
2, = —=-r 72
11 A(/\+w0)2 ( )

1 Ui 27]77x+ |P’2
M,=—— |4\ +—"—5 | |4]q]2 + L Zx 4
12 2A ( (A+wo)2> ( il (A +wp)?

L2 (Gp — qp), + 81«
2
(A + aJo)

(73)
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1 211x + >2< 2i C_IP—CIﬁX‘i‘S/\x
3 = o [4lal2 + i+ el | 201 L £ 8| 7
2 (A + wo) (A + wo)
1 24 1p?  .i(gp—qp)+4A
L= L (1602 1 4|qP + 1 |p|4+2/(qp qp) ! /AW
2A (A + wo) (A4 wo)

Y L IO B LA pI2 2i(dp—ab), +8Mx )
(7\+wo)2 (A 4wt (/\+w0)2

2 2 2i(gp—qp 8A
o —T ) (aq2 + 1177t+\p!4t+ i(gp qp)ﬁg 1t
(A4 wo) (A4 wo) (A4 wo)
(75)
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27777x+|P|2
12, = |(ar+—T ) (a]qp+xT 1Py

22 2A ( (/\+w0)2> ( | | ()\—'—(&)0)4
2i (Gp — qp),, + 8\« 4 2n1: + |p|?
( ) AV TS IUPYE S |p|4t
(A + wo) (A + wo) (A + wo)

2i (Gp — qp), + 8A1; (76)
(A + wp)?
where

R S U P
A=EG—F <2q (A+wo)2) <2q+(/\+w0)2) (77)
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5. Conclusions and (some) open problems.

Lax pair is presented.

Darboux is constructed.

Soliton solutions are found.
Fundamental forms are obtained.
Area is found.

Soliton surface will be obtained.

ok~ wndH=
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Thank you for attention!
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