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1. The (1+1)-dimensional Schrödinger-Maxwell-Bloch
equation

Optical soliton propagation in fibres with resonant and erbium-doped
systems is governed by the coupled systems of the SMBE.
The (1+1)-dimensional Schrödinger-Maxwell-Bloch equation (SMBE)
has form

iqt + qxx + 2|q|2q − 2ip = 0, (1)

px − 2iω0p − 2ηq = 0, (2)

ηx + qp∗ + q∗p = 0, (3)

where q, p are complex variables functions, and η is a real variable
function, ω0 is a real constant. This (1+1)-dimensional SMBE is
integrable are given by ISP.
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1.1 Lax representation of the (1+1)-dimensional SMBE

The corresponding Lax representation of equations (1)-(3) reads as

Ψx = UΨ, (4)

Ψt = VΨ, (5)

where Ψ = (Ψ1, Ψ2)T is vector eigenfunction and U, V are matri-
ces, depending on the complex eigenvalue parameter λ:

U =

(
−iλ q
−q∗ iλ

)
≡ −iλσ3 + U0, (6)

V = i

(
iλ2 iλq
iλq∗ −iλ2

)
+

(
|q|2 qx
q∗x −|q|2

)
+

i

λ + ω0

(
η −p
−p̄ −η

)
≡

≡ iλ2V2 + iλV1 + iV0 +
i

λ + ω0
V−1. (7)
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1.2.The Darboux transformation.

The Darboux transformation is very efficient for construction of soli-
ton solutions. Based on the Darboux transformation for AKNS sys-
tem, we consider the following transformation of the SMBE

Ψ[1] = TΨ = (λI −M)Ψ, (8)

where Ψ[1], Ψ are eigenfunctions, T is the Darboux matrix, M and
I matrices have the form

M =

(
m11 m12

m21 m22

)
, I =

(
1 0
0 1

)
.
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Substituting (8) into the Lax pair (4)-(5) we obtain expressions for
Ψ[1]

ψ
[1]
x = U [1]ψ[1], (9)

ψ
[1]
t = V [1]ψ[1], (10)

where U [1] and V [1] depend on q[1], p[1], η[1] and λ, respectively. In
order to hold the equations (9) and (10), T is the Darboux matrix
and must satisfy the next equalities

Tx + TU = U [1]T , (11)

Tt + TV = V [1]T . (12)
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Finally, we have DT of the SMBE:

q[1] = q + 2m12, (13)

η[1] =
1

�

[
|iω0 +m11|2 − |m12|2)η − pm∗12(iω0 +m11)−

−p∗m12(iω0 +m∗11)] , (14)

p[1] =
1

�

[
p(iω0 +m11)

2 − p∗m2
12 + 2ηm12(iω0 +m11)

]
, (15)

Here symbol � has form

� = det(M + iω0I ) = −ω2
0 + iω0(m11 +m∗11) + |m11|2 + |m12|2.

(16)
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Having the explicit form the DT (13)-(15) of the SMBE, we can
construct exact solutions. To get one-soliton solutions we assume
trivial seed solutions as

q = p = 0, η = 1. (17)

Then the corresponding associated linear system takes the form

Ψ1x = −iλΨ1, (18)

Ψ2x = iλΨ2, (19)

Ψ1t =

(
−2iλ2 +

i

λ + ω0

)
Ψ1, (20)

Ψ2t =

(
2iλ2 − i

λ + ω0

)
Ψ2, (21)

Kuralay Yesmakhanova, Zhanar Umurzakhova, Gaukhar ShaikhovaSoliton surface for the (1+1)-dimensional SMBE



This system admits the following exact solutions

ψ11 = exp

[
λ1x +

(
iλ2

1 +
1

λ1 + iω0

)
t +

x0 + iy0
2

]
, (22)

ψ21 = exp

[
−λ1x −

(
iλ2

1 +
1

λ1 + iω0

)
t − x0 + iy0

2
+ iz

]
(23)

and x0, y0, z and ω0 are real constants. Here λ1 = a1 + ib1
(a1, b1 ∈ R).
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Then the one-soliton solution of (1+1) dimensional SMBE is derived
as

q[1] = 2a1sech [x̃ ] exp [i ỹ − iz ] ,

p[1] = 2a1
sech2[x̃ ] (a1 sinh[x̃ ] + i (b1 + ω0) cosh[x̃ ])

a21 + (b1 + ω0)
2

exp i [ỹ − z ],

η[1] = 1− 2
a21sech

2[x̃ ]

a21 + (b1 + ω0)
2

,

where

x̃ = 2a1x +

(
−4a1b1 +

2a1

a21 + (b1 + ω0)
2

)
t + x0,

ỹ = 2b1x +

(
2
(
a21 − b21

)
− 2(b1 + ω0)

a21 + (b1 + ω0)
2

)
t + y0.
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2. The fundamental form.

2.1.The first fundamental form for the (1+1)- dimensional
SMBE.

In general, the first and second fundamental forms are

I = gijdx
idx j , (24)

II = bijdx
idx j , (25)

here gij , bij are matrices

gij =

(
E F
F G

)
, bij =

(
e f
f d

)
(26)
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Position vector is
~r = (r1, r2, r3), (27)

and normal to the surface is

~n = (n1, n2, n3), ~n2 = 1. (28)

Using Sym-Tafel formula

r = Φ−1Φλ, (29)

we can get position matrices

rx = Φ−1UλΦ, rt = Φ−1VλΦ. (30)
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The fundamental forms can be presented through position and nor-
mal vectors:

I = ~dr · ~dr = ~r2x dx
2 + 2~rx~rtdxdt +~r2t dt

2, (31)

or
I = Edx2 + 2Fdxdt + Gdt2, (32)

II = −~dn · ~dr = (~n ·~rxx ) dx2 + 2 (~n ·~rxt) dxdt + (~n ·~rtt) dt2, (33)

or
II = edx2 + 2fdxdt + gdt2. (34)
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Relations between derivations of vector and matrix form of r with
respect to x and t:

~r2x =
1

2
tr
(
r2x
)

, (35)

~r2t =
1

2
tr
(
r2t
)

, (36)

~rx~rt =
1

2
tr (rx rt) . (37)

Now, we obtain the necessary quantities

r2x = Φ−1U2
λΦ, (38)

r2t = Φ−1V 2
λ Φ, (39)

rx rt = Φ−1λUλVλΦ. (40)
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Now we find traces of (38) - (40)

tr(r2x ) = −2, (41)

tr(r2t ) = −2

(
16λ2 + 4 |q|2 + η2 + |p|2

(λ + ω0)
4
+

+
2i

(λ + ω0)
2 (q̄p − qp̄) +

8λη

(λ + ω0)
2

)
, (42)

tr (UλVλ) = −2

(
4λ +

η

(λ + ω0)
2

)
. (43)
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Finally, we get the first fundamental form for (1+1)-dimentional
SMBE:

I = dx2 + 2

(
16λ2 + 4 |q|2 + η2 + |p|2

(λ + ω0)
4
+

+2
i (q̄p − qp̄) + 4λη

(λ + ω0)
2

)
dxdt +

(
4λ +

η

(λ + ω0)
2

)
dt2, (44)
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2.2.The second fundamental form for the (1+1)- dimensional
SMBE.

Using Sym-Tafel formula (29) we can find the next

rxx = Φ−1 [Uλ,U ]Φ, (45)

rxt = Φ−1 [Uλ,V ]Φ, (46)

rtt = Φ−1 [Vλ,V ]Φ. (47)

But a normal to surface can be calculated by formula

n =
Φ−1 [Uλ,Vλ]Φ√
1
2 tr
(
[Uλ,Vλ]

2
) (48)
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Relations between derivations of vector and matrix form of r with
respect to x and t:

~n ·~rxx =
1

2
tr (n · rxx ) , (49)

~n ·~rxt =
1

2
tr (n · rxt) , (50)

~n ·~rtt =
1

2
tr (n · rtt) . (51)
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Traces are determined by the next form:

tr (n · rxx ) =
tr ([Uλ,Vλ] [Uλ,U ])√

1
2 tr
(
[Uλ,Vλ]

2
) , (52)

tr (n · rxt) =
tr ([Uλ,Vλ] [Uλ,V ])√

1
2 tr
(
[Uλ,Vλ]

2
) , (53)

tr (n · rtt) =
tr ([Uλ,Vλ] [Vλ,V ])√

1
2 tr
(
[Uλ,Vλ]

2
) . (54)
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The second fundamental form (33) takes the form

II = − 1

2µ

{
αdx2 + 2βdxdt + γdt2

}
(55)

where
α = tr ([Uλ,U ] [Uλ,Vλ]) , (56)

β = tr ([Uλ,V ] [Uλ,Vλ]) , (57)

γ = tr ([Vλ,V ] [Uλ,Vλ]) , (58)

µ =

√
1

2
tr
(
[Uλ,Vλ]

2
)

, (59)
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3. Area of surface for the (1+1)- dimensional SMBE.

Surface’s area is given in the form

S =
∫∫ √

gdxdt =
∫∫
|~rx ∧~rt | dxdt, (60)

where

g = det (gij ) = det

(
~r2x ~rx ·~rt

~rx ·~rt ~r2t

)
. (61)
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Taking into account (45), we get

S =
∫∫ √

1

2
tr {[Uλ,U ]}2dxdt (62)

So we can write the surface area using Lax pairs.

[Uλ,U ] = −iλ[σ3,U0] = −2i

(
0 q
q̄ 0

)
, (63)

[Uλ,U ]2 = 4

(
|q|2 0

0 |q|2
)

, (64)

tr
(
[Uλ,U ]2

)
= 8|q|2. (65)

Finally, we get

S = 2
∫∫ √

|q|2dxdt (66)

Kuralay Yesmakhanova, Zhanar Umurzakhova, Gaukhar ShaikhovaSoliton surface for the (1+1)-dimensional SMBE



4. Christoffel symbols

The Gauss equations associated with a surface are

~rxx = Γ1
11~rx + Γ2

11~rt + e~n, (67)

~rxt = Γ1
12~rx + Γ2

12~rt + f~n, (68)

~rtt = Γ1
22~rx + Γ2

22~rt + g~n. (69)

The Γi
jk in (71)-(73) are the usual Christoffel symbols given by the

relations

Γi
jk =

g il

2
(gjl ,k + gkl ,j − gjk,l ) (70)
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The Gauss equations associated with a surface are

Γ1
11 = −

2ηx

∆ (λ + ω0)
2

(
4λ +

η

(λ + ω0)
2

)
, (71)

Γ2
11 =

2ηx

∆ (λ + ω0)
2

, (72)

Γ1
12 = −

1

2∆

(
4λ +

η

(λ + ω0)
2

)(
4|q|2x +

2ηηx + |p|2x
(λ + ω0)

4
+

+
2i (q̄p − qp̄)x + 8ληx

(λ + ω0)
2

)
(73)
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Γ2
12 =

1

2∆

[
4|q|2x +

2ηηx + |p|2x
(λ + ω0)

4
+

2i (q̄p − qp̄)x + 8ληx

(λ + ω0)
2

]
(74)

Γ1
22 =

1

2∆

(
16λ2 + 4 |q|2 + η2 + |p|2

(λ + ω0)
4
+ 2

i (q̄p − qp̄) + 4λη

(λ + ω0)
2

)
·

·
(

4ηt

(λ + ω0)
2
− 4|q|2x −

2ηηx + |p|2x
(λ + ω0)

4
− 2i (q̄p − qp̄)x + 8ληx

(λ + ω0)
2

)
−

−
(

4λ +
η

(λ + ω0)
2

)(
4|q|2t +

2ηηt + |p|2t
(λ + ω0)

4
+

2i (q̄p − qp̄)t + 8ληt

(λ + ω0)
2

)
(75)
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Γ2
22 =

1

2∆

[(
4λ +

η

(λ + ω0)
2

)(
4|q|2x +

2ηηx + |p|2x
(λ + ω0)

4
+

+
2i (q̄p − qp̄)x + 8ληx

(λ + ω0)
2

− 4ηt

(λ + ω0)
2

)
+ 4|q|2t +

2ηηt + |p|2t
(λ + ω0)

4
+

+
2i (q̄p − qp̄)t + 8ληt

(λ + ω0)
2

]
(76)

where

∆ = EG − F 2 =

(
2q̄ − i p̄

(λ + ω0)
2

)(
2q +

ip

(λ + ω0)
2

)
(77)
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5. Conclusions and (some) open problems.

1. Lax pair is presented.
2. Darboux is constructed.
3. Soliton solutions are found.
4. Fundamental forms are obtained.
5. Area is found.
6. Soliton surface will be obtained.
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Thank you for attention!
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