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A standard way to gain insight into the behaviour of a physical
system is: 

construct a mathematical model
analyze the model

use it to make predictions
compare with experiment


The models provided by classical and quantum mechanics are
spectacularly successful in this regard.
A relatively few systems, however, can be solved exactly with
explicit analytic expressions: integrable Hamiltonian systems. A
special subclass is: superintegrable systems.

a fundamental procedure for the positioning of satellites and
orbital maneuvering of interplanetary spacecraft is based on
the superintegrability of the Kepler system.

the periodic table is based on perturbations of the
superintegrable hydrogen atom.
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Definition

In classical mechanics a Hamiltonian system with n degrees of
freedom is called integrable if it allows n functionally independent
integrals of motion

{X1, . . . ,Xn} .

A superintegrable system is one that allows some additional
integrals of motion

{Y1, . . . ,Yk} ,

such that the set {X1, . . . ,Xn,Y1, . . . ,Yk} is functionally
independent.
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If k =

{
n − 1

1
then the system

is called
maximally
minimally

superintegrable .

The concepts of integrability and superintegrability are also
introduced in quantum mechanics.

Integrals of motion =⇒well defined linear QM operators
algebraically independent

The best known superintegrable systems are:

Kepler, or Coulomb system

Harmonic oscillator

They are characterized by the fact that all finite classical
trajectories in these systems are periodic.
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Kepler system

H =
1

2
p2 + V (r) ,

L = r × p
Li = εiklxkpl

{H, Li} = 0 ⇐⇒ dLi
dt

= 0 .

V (r) = −k

r
Kepler potential

Another conserved vector Laplace-Runge-Lenz

A = p× L−mk
r

r
.

H, A, L: 6 + 1 = 7 conserved quantities.
However, we have 2 relations
(A,L) = 0 and H can be written in terms of A and L.
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Derivation of Kepler orbits

In particular we have A2 = m2k2 + 2mEl2

A · r = r · (p× L)−mkr

Ar cos θ = l2 −mkr

1
r = mk

l2

(
1 + A

mk cos θ
)
, e = A

mk =
√

1 + 2El2

mk2 .

ellipse (e < 1 or −mk2

2l2 < E < 0)

circle (e = 0 or E = −mk2

2l2 )

hyperbola (e > 1 or E > 0)

parabola (e = 1 or E = 0)
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Quantum Coulomb problem in E3

H = p2 − α

r
, α > 0 , L = r × p

Quantum version of Laplace-Runge-Lenz

A = p× L− L× p− α

r
r .

The commutation relations between these operators are

[L,H] = [A,H] = 0 ,

[Lj , Lk ] = iεjklLl , [Lj ,Ak ] = iεjklAl , [Aj ,Ak ] = −iεjklLlH .

The famous Balmer formula, E = −2me4

~2
1
n .

W. Pauli in his remarkable 1926 paper uses precisely the above
formulas to derive the Balmer formula. He obtained this result
before the Schrödinger equation was known using only the algebra,
no calculus.
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Harmonic oscillator

Also maximally superintegrable:

H =
1

2

(
p2 + ω2r2

)
, L = r × p ,

Qik = pipk + ω2xixk
10 conserved quantities, 5 functionally independent ones.

Bertrand’s theorem (1873)

The only spherically symmetric potentials in E3 for which all
bounded trajectories are closed are

V (r) = −k

r
, and V (r) = ω2r2 .
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A systematic search for SIS and their properties was started some
time ago (1965 Winternitz et. al). Originally the approach
concentrated on Hamiltonians of the type

H = −1

2
∆ + V (r)

in 2- and 3- dimensional Euclidean spaces with the restriction that
all integrals of motion should be first- or second-order polynomials
in the momenta.
For Hamiltonians of the given type with second-order integrals of
motion there is a close relation between integrability and the
separation of variables in the Schrödinger and Hamilton-Jacobi
equations. Superintegrable systems of this type are multiseparable.
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This relationship between integrability and separability breaks
down in other cases. For example, for natural Hamiltonians, the
existence of third-order integrals of motion does not lead to the
separation of variables (1935 Drach, 2002 Gravel-Winternitz, 2007
Marquette-Winternitz, 2009 Marquette, 2010Tremblay-Winternitz).
Furthermore, if we consider velocity dependent potentials

H = −1

2
∆ + V (r) + (A,p) ,

then quadratic integrability no longer implies the separation of
variables (1985 Dorizzi et. al, 2004 Bérubé-Winternitz).
With second-order integrals of motion for the Hamiltonians having
velocity dependent potentials and higher-order integrals of motion
with natural Hamiltonians, CM and QM potentials do not
necessarily coincide (1984 Hietarinta, pure QI).

İsmet Yurduşen Hacettepe University, Ankara, Turkey Higher-order superintegrability



Introduction Integrability Superintegrability Examples N = 3, 4, 5 Conclusions

In 2006 together with P. Winternitz we initiated the study of
integrability and superintegrability for systems involving particles
with spin. More specifically, we considered two nonrelativistic
quantum particles, one with s = 1

2 and the other with s = 0.
From the physical point of view, the most interesting Hamiltonian
to consider would be

H = − ~2

2µ
∆ + V0(r) +

1

2

{
V1(r), (σ,L)

}
.

As integrals of motion we considered first- and second-order matrix
differential operators and classified the superintegrable systems in
E2 and E3.
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After the publication of the 2009 paper “An infinite family of
solvable and integrable quantum systems on a plane”
(Tremblay-Turbiner-Winternitz) the direction of the research has
been shifted to higher-order integrability/superintegrability (2011,
2012 Kalnins-Kress-Miller, 2015 Post-Winternitz, Marquette).
Higher-order integrable and SIS can now be more easily tractable
(2012, 2013 Ranada, 2013 Ballesteros et. al).
More recently, exotic and standard potentials appearing in
Quantum SIS has been studied for N = 4 both in Cartesian (2017
Marquette-Sajedi-Winternitz) and Polar (2017, 2018
Escobar-Ruiz–Lopez Vieyra-Winternitz-Yurduşen) coordinates.
Also doubly exotic potentials for N = 5 in Cartesian coordinates
has been studied (2017 Abouamal-Winternitz).
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Superintegrable systems are interesting both from the
mathematical and physical point of view.
In CM they have the following:

In the case of maximal superintegrability all bounded
trajectories are closed and the motion is periodic.

The Poisson algebra of integrals of motion has an interesting
non-Abelian structure. It may be a finite dimensional Lie
algebra, a Kac-Moody algebra or a polynomial algebra.

A special case is quadratic superintegrability when integrals
are second-order polynomials in the momenta. This is related
to multiseparability: the H-J equation allows separation of
variables in more than one coordinate system.
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In QM the SIS have similar distinguishing properties:

The quantum energy levels display “accidental ” degeneracy,
i.e. a degeneracy explained by higher symmetries rather than
the geometrical ones.

Integrability provides a complete set of quantum numbers,
characterizing the system. Superintegrability, in all cases
studied so far, entails exact solvability.

the energy levels can be calculated algebraically.
the wave functions expressed in terms of polynomials.

Integrals form a non-Abelian algebra under Lie commutation.
Again it can be a finite dimensional Lie algebra, a Kac-Moody
algebra or a polynomial algebra.

For quadratic superintegrability Schrödinger equation
separates in more than one system of coordinates. Moreover,
the QM and CM potentials coincide for quadratic
superintegrability.

İsmet Yurduşen Hacettepe University, Ankara, Turkey Higher-order superintegrability



Introduction Integrability Superintegrability Examples N = 3, 4, 5 Conclusions

In this talk we restrict ourselves to the plane E2. The Hamiltonian,
in Cartesian coordinates, has the form

H =
1

2
(p2

x + p2
y ) + V (x , y) .

In CM: px and py are the conjugate momenta.
In QM: they are the corresponding operators

px = −i ~ ∂

∂x
, py = −i ~ ∂

∂y
.

The classical Hamiltonian in polar coordinates reads

H =
1

2

(
p2

r +
p2
θ

r2

)
+ V (r , θ) ,

whereas the corresponding quantum operator takes the form

H = −~2

2

(
∂2

r +
1

r
∂r +

1

r2
∂2
θ

)
+ V (r , θ) .
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INTEGRABILITY: EXISTENCE OF 2nd -ORDER IOM
Let us consider

X = L2
z + 2S(θ)

For X to be an integral of motion, it must

{H,X}PB = 0 , [H,X ] = 0 .

This condition specifies the form of the potential

V (r , θ) = R(r) +
S(θ)

r2
,

where R(r), S(θ) are arbitrary functions.

İsmet Yurduşen Hacettepe University, Ankara, Turkey Higher-order superintegrability



Introduction Integrability Superintegrability Examples N = 3, 4, 5 Conclusions

Radial Component R(r)

Having the 2nd -order IOM X (which guarantees the separability of
H-J or S) we showed that the R(r) part of the potential must
satisfy

R(r) = 0 , R(r) =
a

r
, R(r) = b r2 .

By canonical transformation we prepare our problem to resemble
the one, for which the Bertrand’s theorem will apply. In both
problems we have

ṙ = ±
√

2(H − Reff ) , Reff (r) = R(r) +
X

2 r2
,

however, we have to modify

θ̇ =
`

r2
=⇒ Ω̇(θ) =

√
X

r2
,

i,e,; (θ, pθ) =⇒ (Ω,PΩ)
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For this we define

Ω(θ) =

∫ θ
√

X0

X0 − 2 S(ω)
dω , X0 > 0 ,

whose time evolution is given by

Ω̇ = {Ω, H}
PB

=
1

r2

√
X0(X − 2 S(θ))

X0 − 2S(θ)
.

Substituting the values of the integrals H = E and X = X0, we
obtain

dr

dΩ
= ± r2

√
X0

√
2(E − Reff ) .

Upon introducing u = 1
r and squaring both sides we get

E =
1

2
X0

(
du

dΩ

)2

+ R̃eff (u) ,

after which the Bertrand’s theorem will follow.
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SUPERINTEGRABILITY: EXISTENCE OF Nth-ORDER IOM

General IOM (Classically)

Y = Y (N) +

[
N
2

]∑
`=1

N−2`∑
j=0

Fj ,2` p
j
x pN−j−2`

y

where Y (N) contains only the Nth-order terms

Y (N) =
∑

0≤m+n≤N

AN−m−n,m,n LN−m−n
z pm

x pn
y .

Here AN−m−n,m,n are (N+1)(N+2)
2 constants. These leading order

terms will define the form of the potential.
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In Polar case, by putting

px = (cos θ pr −
sin θ

r
Lz ) , py = (sin θ pr +

cos θ

r
Lz ) ,

we obtain the corresponding expressions in polar coordinates. Also, the
N th-order terms can be written more suitably

Y (N)=
∑

0≤s+2k≤N

LN−s−2k
z Ps+2k

[
B

(1)
N−s−2k,s,k cos s Θ+B

(2)
N−s−2k,s,k sin s Θ

]
P2 ≡ p2

x + p2
y , tan Θ ≡ py

px

For fixed s, each pair(
B

(1)
N−s−2k,s,k cos s Θ, B

(2)
N−s−2k,s,k sin s Θ

)
(s 6= 0) forms a doublet under O(2) rotations. At s = 0, the pair reduces
to a singlet. Under rotations through the angle θ around the z-axis, the
doublets rotate through s θ.
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Similarly, in the quantum case we introduce the Hermitian
Nth-order operator Y (N)

General IOM (Quantum case)

Y = Y (N) +

[
N
2

]∑
`=1

N−2`∑
j=0

{
Fj ,2` , p

j
x pN−j−2`

y

}
with Y (N)

Y (N) =
∑

0≤s+2k≤N

{
LN−s−2k

z ,
(
p2

x + p2
y

)k

(
B

(1)
N−s−2k,s,k

[
(px + ipy )s ]

Re
+ B

(2)
N−s−2k,s,k

[
(px + ipy )s ]

Im

)}
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Determining equations: [H, Y ] = 0.

In the quantum case, [H, Y ] is an operator of order (N + 1), i.e.

[H, Y ] =
N+1∑

k+l=0

Zk,l (r , θ)
∂k+l

∂rk ∂θl
.

We require Zk,l = 0 for all k and l and obtain the determining
equations. The terms of order k + l = N + 1 and k + l = N vanish
automatically. Moreover, only the terms with k + l having the
opposite parity than N provide independent determining equations
(Zk,l = 0). Those with the same parity provide equations that are
differential consequences of the first ones. For the classical case,
the determining equations are obtained from the quantum case by
taking the limit ~→ 0 .
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Vanishing of the [H, Y ] = 0 implies that the potential V must
satisfy a linear PDE of order N. For arbitrary potential this linear
PDE takes the form

Linear Compatibility Condition (LCC)

N−1∑
j=0

(−1)j ∂N−1−j
x ∂j

y

[
(j + 1) fj+1,0 ∂xV + (N − j) fj ,0 ∂yV

]
= 0

This is a necessary (not sufficient) condition for the existence of
the integral Y . The functions fj ,0 do not depend on the potential

fj ,0 =

N−j∑
n=0

j∑
m=0

(
N −m − n

j −m

)
AN−m−n,m,n xN−j−n (−y)j−m

and they are completely determined by the coefficients AN−m−n,m,n

of Y (N).
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For R(r) = 0, certain constants among the B
(1)
N−s−2k,s,k and

B
(2)
N−s−2k,s,k that define the Nth-order terms Y (N) of the

integral Y do not appear in the LCC.

Hence, the classical Nth-order terms Y (N) in the integral Y
can be decomposed into two parts

Y (N) = Y
(N)
I + Y

(N)
II

Y
(N)
I =

∑
N−1≤s+2k≤N

LN−s−2k
z Ps+2k

[
B

(1)
N−s−2k,s,k cos s Θ + B

(2)
N−s−2k,s,k sin s Θ

]
,

Y
(N)
II =

∑
0≤s+2k≤N−2

LN−s−2k
z Ps+2k

[
B

(1)
N−s−2k,s,k cos s Θ + B

(2)
N−s−2k,s,k sin s Θ

]
,
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We define two cases:

Standard potentials

Y
(N)
I 6= 0: this case corresponds to Standard potentials for which

the angular component S(θ) satisfies the LCC.

Exotic potentials

Y
(N)
II 6= 0: this situation corresponds to the Exotic potentials where

the function S(θ) satisfies non-linear equations rather than linear
ones. Unlike the previous case, here the LCC is trivially satisfied.
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Quantum case

Y
(N)
I =

∑
N−1≤s+2k≤N

{
LN−s−2k

z , P2k

(
B

(1)
N−s−2k,s,k

[
(px + i py )s

]
Re

+ B
(2)
N−s−2k,s,k

[
(px + i py )s

]
Im

)}
,

Y
(N)
II =

∑
0≤s+2k≤N−2

{
LN−s−2k

z , P2k

(
B

(1)
N−s−2k,s,k

[
(px + i py )s

]
Re

+ B
(2)
N−s−2k,s,k

[
(px + i py )s

]
Im

)}
.
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N = 3

Y (3) is composed of the following terms:

C1 {L2
z , px}

C2 {L2
z , py}

, D0 L
3
z , B0 Lz (p2

x + p2
y ),

A3 px (p2
x + p2

y )
A4 py (p2

x + p2
y )

,
B1 {Lz , (p

2
x − p2

y )}
B2 {Lz , 2px py}

,
A1 (p3

x − 3pxp
2
y )

A2 (3p2
xpy − p3

y )
,

Notation:

Exotic constants

B
(1)
3,0,0 = B

(2)
3,0,0 ≡ D0 ≡ A3,0,0 , (s = 0, k = 0)

B
(1)
2,1,0 ≡ C1 ≡ A2,1,0 , B

(2)
2,1,0 ≡ C2 ≡ A2,0,1 , (s = 1, k = 0)
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N = 3

Standard constants

B
(1)
1,0,1 = B

(2)
1,0,1 ≡ B0 ≡

A1,2,0 + A1,0,2

2
, (s = 0, k = 1)

B
(1)
0,1,1 ≡ A3 ≡ 3A0,3,0+A0,1,2

4 ,

B
(2)
0,1,1 ≡ A4 ≡ 3A0,0,3+A0,2,1

4 ,

 (s = 1, k = 1)

B
(1)
1,2,0 ≡ B1 ≡ A1,2,0−A1,0,2

2 ,

B
(2)
1,2,0 ≡ B2 ≡ A1,1,1

2 ,

 (s = 2, k = 0)

B
(1)
0,3,0 ≡ A1 ≡ A0,3,0−A0,1,2

4 ,

B
(2)
0,3,0 ≡ A2 ≡ A0,2,1−A0,0,3

4 ,

 (s = 3, k = 0)
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N = 3

[H,Y 3] is a 4th-oder operator in general.

relevant information is coming from 2nd and 0th-order terms.
(i.e.; there exist 4 determining equations)

depending on the fact that which constants appear in the LCC
we obtain and classify various potentials.

most of the doublets do not mixed in the determining
equations
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N = 3

Standard Potentials

T1(θ) =
s1 sin(θ) + s2 cos(θ) + s3 sin(3θ) + s4 cos(3θ)

A4 cos(θ)− A3 sin(θ) + 3(A2 cos(3θ)− A1 sin(3θ))
,

T2(θ) =
s1 + s2 cos(2θ) + s3 sin(2θ)

B1 cos(2θ) + B2 sin(2θ)
+ s4,

Only one nonlinear determining equation is left and that fixes the
parameters s1, s2, . . ..

In many cases we recover the TTW systems but for some of the
solutions we obtain pure quantum potentials (proportional to ~2)
which cannot be reduced or transformed to TTW systems.
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N = 3

Exotic Potentials
for D0 we obtain a potential expressible in terms of
Weierstrass elliptic function, however,(

Y

2

)2

= 8

(
X

2

)3

− c1
~4

4
X + c2

~6

4
.

We have a 4th-order nonlinear equation for (C1,C2).

After making the change of variables z = tan(θ) and with the
help of transformation (z ,T (z)) −→ (x ,W (x)) where

z = 2
√

x
√

1−x
1−2x , we arrived the derivative of the first canonical

subcase of the Cosgrove’s master Painlevé equation

T (x) = ~2

[
W (x)

√
x
√

1− x
+ γ

(1− 2 x)

4
√
x
√

1− x

]
, x ≡

{
cos2[ θ2 ]

sin2[ θ2 ],

with γ = (γ2 + γ4)− (γ1 + γ3) +
√

2 γ1 − 3
4 and

(γ2 + γ3)(γ1 + γ4 −
√

2γ1) = 0.

İsmet Yurduşen Hacettepe University, Ankara, Turkey Higher-order superintegrability



Introduction Integrability Superintegrability Examples N = 3, 4, 5 Conclusions

N = 3

In the above potential W (x) is expressed in terms of Painlevé
transcendent P6 as

W (x ; γ1, γ2, γ3, γ4) = x2(x−1)2

4P6(P6−1)(P6−x)

[
P ′6 −

P6(P6−1)
x(x−1)

]2

+ 1
8 (1−

√
2γ1)2(1− 2P6)− 1

4γ2

(
1− 2x

P6

)
−1

4γ3

(
1− 2(x−1)

P6−1

)
+

(
1
8 −

γ4
4

)(
1− 2x(P6−1)

P6−x

)
,

with γ1, γ2, γ3 and γ4 are the parameters that define the sixth
Painlevé transcendent P6 which satisfies the well known second
order differential equation:

P ′′6 = 1
2

[
1

P6
+ 1

P6−1 + 1
P6−x

]
(P ′6)2 −

[
1
x + 1

x−1 + 1
P6−x

]
P ′6

+ P6(P6−1)(P6−x)
x2(x−1)2

[
γ1 + γ2 x

P2
6

+ γ3 (x−1)
(P6−1)2 + γ4 x(x−1)

(P6−x)2

]
.
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N = 3

This potential expressed in terms of Painlevé transcendent is the
most interesting one.

It provides one of the relationships between the theory of
quantum superintegrable systems and soliton theory i.e. the
theory of infinite dimensional integrable systems, usually
described by nonlinear partial differential equations that are
compatibility conditions for certain linear equations obtained
from Lax pairs.

The “Painlevé conjecture” states that all reductions of soliton
type equations to ordinary differential equations should have
the Painlevé property i.e. should be single-valued about
movable singularities.
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N = 3

The 6 Painlevé transcendents were discovered in a study of
second order ODEs with the Painlevé property and they are
the only equations of the studied class that can not be
expressed in terms of elliptic functions, or solutions of linear
differential equations.

The Painlevé equations come up as solutions of many of the
nonlinear equations of mathematical physics, such as the
Korteweg-de-Vries, Boussinesq or Kadomtsev-Petviashvili to
name just a few examples.

Here it appears as superintegrable potentials in the linear
Schrödinger equation in quantum mechanics.
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N = 4

Y (4) is composed of the following terms:

A1 {L3
z , px}

A2 {L3
z , py}

,
B3 {L2

z , (p
2
x − p2

y )}
B4 {L2

z , , 2px py}
,

L4
z ,

{L2
z , (p

2
x + p2

y )}, (p2
x + p2

y )2,

A3 {Lz , px (p2
x + p2

y )}
A4 {Lz , py (p2

x + p2
y )} ,

B1 (p2
x − p2

y )(p2
x + p2

y )
B2 2px py (p2

x + p2
y )

,

C1 {Lz , (3p2
xpy − p3

y )}
C2 {Lz , (p

3
x − 3pxp

2
y )} ,

D1 (p4
x + p4

y − 6p2
xp

2
y )

D2 4pxpy (p2
x − p2

y )
,


s k
0 0
0 1
1 0
2 0

 ,



s k
0 2
1 1
2 1
3 0
4 0

 ,
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N = 4

[H,Y 4] is a 5th-oder operator in general.

relevant information is coming from 3rd and 1st-order terms.
(i.e.; there exist 6 determining equations)

depending on the fact that which constants appear in the LCC
we obtain and classify various potentials.

most of the doublets do not mixed in the determining
equations
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N = 4

Standard Potentials

T1(θ) =
s1 + s2 cos(2θ) + s3 sin(2θ) + s4 cos(4θ) + s5 sin(4θ)

B2 cos(2θ)− B1 sin(2θ) + 2(D2 cos(4θ)− D1 sin(4θ))
,

T2(θ) =
s1 + s2 cos(θ) + s3 sin(θ) + s4 cos(3θ) + s5 sin(3θ)

A3 cos(θ) + A4 sin(θ) + C2 cos(3θ) + C1 sin(3θ)
,

Only one nonlinear determining equation is left and that fixes the
parameters s1, s2, . . ..

In many cases we recover the TTW systems but for some of the
solutions we obtain pure quantum potentials (proportional to ~2)
which cannot be reduced or transformed to TTW systems.
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N = 4

As an example let us investigate T1(θ) in detail. Introducing it into
the nonlinear determining equation we obtain the following
solutions

s
(`)
1 =

q` ~2

4 D2
1

(
B2

2 − 8D2
1

)
2D2

2

[
B2D2

(
8D2

1 − B2
2

) (
B2

2

(
D2

1 + D2
2

)
+ 8D2

1

(
4D2

1 + 3D2
2

))
+

(
8B2

2

(
D5

1 − 6D3
1 D2

2

)
− B4

2

(
D3

1 + 3D2
2 D1

)
+ 64

(
2D2

1 + D2
2

)
D5

1

)
q`

B2D2
1 D2

(
3B2

2 + 40D2
1

)
q2
` − D3

1

(
B2

2 + 8D2
1

)
q3
`

]
,

s
(`)
2 = q` ~2 ,

s
(`)
3 =

q` ~2

D1 D2
2

(
B2

2 − 8D2
1

)
2

[
D2

(
B2

2 − 8D2
1

) (
3B2

2

(
D2

1 + D2
2

)
+ 8D2

1

(
2D2

1 + D2
2

))
+

(
2B3

2

(
D3

1 + 4D2
2 D1

)
− 32B2D5

1

)
q` + D2

1 D2

(
7B2

2 + 8D2
1

)
q2
` + 2 B2 D3

1 q3
`

]
,

s
(`)
4 =

q` ~2

D2
2

(
B2

2 − 8D2
1

)
2

[
4 B2D2

(
D2

1 + 2D2
2

) (
B2

2 − 8D2
1

)
+ 2 D1

(
B2

2

(
D2

1 + 6D2
2

)
− 16D2

1

(
D2

1 + D2
2

))
q` + 8 B2 D2

1 D2 q2
` + 2 D3

1 q3
`

]
,

s5 = 0 ,
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N = 4

where q`, ` = 1, 2, 3, 4, are the four roots of the quartic equation

~8 [D4
1 q4 + 4 B2 D2 D3

1 q3 + (B2
2

(
D4

1 + 6D2
2 D2

1

)
− 16D4

1

(
D2

1 + D2
2

)
) q2

− 2 B2 D1

(
8D2

1 − B2
2

)
D2

(
D2

1 + 2D2
2

)
q +

(
B2

2 − 8D2
1

)
2D2

2

(
D2

1 + D2
2

)
] = 0 ,

whose discriminant is

Γ = −256 ~48 D24
1 D2

2

(
B2

2 − 8D2
1

)
2
[
B4

2

(
60D2

2 − 48D2
1

)
+ 768B2

2

(
D2

1 + D2
2

)
2 + B6

2 − 4096
(
D2

1 + D2
2

)
3
]
.

The above solutions are obtained for Γ 6= 0. Such discriminant is zero if
and only if at least two roots are equal. If the discriminant is negative
there are two real roots and two complex conjugate roots. If it is positive
the roots are either all real or all non-real. From a physical point of view
we consider only real solutions. In general, we obtain an angular
component SI (θ) proportional to ~2 with no classical analog, it cannot be
transformed or reduced to that of the TTW model.
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N = 4

In particular, the discriminant vanishes for ~ = 0. The highest
order terms in the nonlinear determining equation are proportional
to ~2, therefore the limit ~→ 0 is singular and the above solutions
are no longer valid for ~ = 0.
Now, let us analyze the zeros of the discriminant
Case I: ~ = 0
For ~ = 0, non-trivial solutions exist only for B2 = 0. The
corresponding coefficients take the values

s1 = s1 , s2 = 0 , s3 = 0 , s4 = s4 , s5 = s5 ,

which yields the potential

SI (θ) =
4 (D1 cos 4 θ + D2 sin 4 θ)s1 + 4 (D1s5 + D2s4)(

D1
2 − D2

2
)

cos 8 θ + 2D1D2 sin 8 θ − (D1
2 + D2

2)
.
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N = 4

We know that the angular component of the TTW potential is

STTW(θ) =
α k2

cos2 (kθ)
+

β k2

sin2 (kθ)

=
4 k2 (α − β) cos 2 k θ − 4 k2(α + β )

cos 4 k θ − 1
.

In this potential, it is easy to check that for

θ → θ +
1

4
arctan(−D2/D1) , α = −

−
√

D2
1 + D2

2 s1 + D1s4 + D2s5

8 (D2
1 + D2

2 )
,

β = −
D2

1 s1 +
√

D2
1 + D2

2D1s4 + D2

(
D2s1 +

√
D2

1 + D2
2 s5

)
8 (D2

1 + D2
2 )

3/2
, k = 2

we recover SI (θ) . Therefore, SI (θ) corresponds to a rotated TTW
model (with no radial component R(r) = 0) which is a
superintegrable system both in the classical and quantum cases.
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N = 4

Case II: D1 = 0
The corresponding coefficients vanish, s1 = s2 = s3 = s4 = s5 = 0,
which gives the trivial solution SI (θ) = 0.
Case III: D2 = 0
The corresponding coefficients are given by

s1 = s1 , s2 = 0 , s3 =
B2

2 s4 − 8D2
1 (s1 + s4)

2B2 D1
, s4 = s4 , s5 = 0 ,

thus

SI (θ) = −2(B2 s4 + 2D1 s1 sin 2 θ + 2D1 s4 sin 2 θ)

B2 D1 (1 + cos 4 θ)
.

This solution corresponds to the angular component of the TTW
model with k = 1.
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N = 4

Case IV: B2
2 − 8D2

1 = 0
For simplicity, we put D1 = D2 = 1 thus B2 =

√
8. In this case,

the coefficients

s1 = 0 , s2 = −2
√

2 ~2 , s3 = 2
√

2 ~2 , s4 = −4 ~2 , s5 = 0 ,

lead to

SI (θ) = 2 ~2

√
2 cos 6θ −

√
2 sin 6θ + 2[

cos 4θ − sin 4θ +
√

2 cos 2θ
]2 ,

which is a pure quantum potential. It can not be reduced to that
of the TTW model.
A similar analysis can be done for the last factor of the
discriminant.
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N = 4

Exotic Potentials

we have 2 separate 5th-order nonlinear equations for the
doublets (A1,A2) and (B3,B4).

Each can be integrated once and after making the change of
variables z = tan(θ) or z = tan(2θ) can be integrated once
more.

making one more transformation (z ,T (z)) −→ (x ,W (x))
where

z =
2
√
x
√

1− x

1− 2x
,

we arrived the derivative of the first canonical subcase of the
Cosgrove’s master Painlevé equation.
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N = 4

We have the following exotic potentials

T1(x) = ~2

[
W (x)

√
x
√

1− x
+ γ

(1− 2 x)

4
√
x
√

1− x

]
where

x ≡
{ cos2[ θ2 ]

sin2[ θ2 ] ,

and

T2(x) = ~2 2

[
W (x)

√
x
√

1− x
+ γ

(1− 2 x)

4
√
x
√

1− x

]
where x ≡

{
cos2[θ]
sin2[θ] ,

with γ = (γ2 + γ4)− (γ1 + γ3) +
√

2 γ1 −
3

4
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N = 5

Y (5) is composed of the following terms:

A1 {L4
z , px}

A2 {L4
z , py}

,
B1 {L3

z , (p
2
x − p2

y )}
B2 {L3

z , , 2px py}
,
C1 {L2

z , (p
3
x − 3pxp

2
y )}

C2 {L2
z , (3p2

xpy − p3
y )} ,

F1 {L2
z , px (p2

x + p2
y )}

F2 {L2
z , py (p2

x + p2
y )} ,

A0L
5
z ,

M1{L3
z , (p

2
x + p2

y )}, M2{Lz , (p
2
x + p2

y )2},

K1 px (p2
x + p2

y )2

K2 py (p2
x + p2

y )2 ,
G1 {Lz , (p

2
x − p2

y )(p2
x + p2

y )}
G2 {Lz , 2px py (p2

x + p2
y )} ,

H1 (p3
x − 3pxp

2
y )(p2

x + p2
y )

H2 (3p2
xpy − p3

y )(p2
x + p2

y )
,
D1 {Lz , (p

4
x + p4

y − 6p2
xp

2
y )}

D2 {Lz , 4pxpy (p2
x − p2

y )} ,

E1 (p5
x − 10p3

xp
2
y + 5pxp

4
y )

E2 (5p4
xpy − 10p2

xp
3
y + p5

y )
,
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N = 5



s k
0 0
0 1
1 0
1 1
2 0
3 0


,



s k
0 2
1 2
2 1
3 1
4 0
5 0


,
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N = 5

[H,Y 5] is a 6th-oder operator in general.

relevant information is coming from 4th, 2nd and 0th-order
terms. (i.e.; there exist 9 determining equations)

depending on the fact that which constants appear in the LCC
we obtain and classify various potentials.

most of the doublets do not mixed in the determining
equations
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N = 5

Standard Potentials

T1(θ) =
s1 sin θ+s2 cos θ+s3 sin 3θ+s4 cos 3θ+s5 sin 5θ+s6 cos 5θ

Kθ + Hθ + Eθ
,

where Kθ = K2 cos θ − K1 sin θ, Hθ = 3(H2 cos 3θ − H1 sin 3θ) and
Eθ = 5(E2 cos 5θ − E1 sin 5θ).

T2(θ) =
s1 + s2 cos(2θ) + s3 sin(2θ) + s4 cos(4θ) + s5 sin(4θ)

G1 cos(2θ) + G2 sin(2θ) + D1 cos(4θ) + D2 sin(4θ)
+ s6,

The parameters s1, s2, . . . are determined by the remaining
nonlinear determining equations

In many cases we recover the TTW systems but for some of the
solutions we obtain pure quantum potentials (proportional to ~2)
which cannot be reduced or transformed to TTW systems.
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N = 5

Exotic Potentials (Singlets)

Exotic Singlet M1 (L3
z (p2

x + p2
y ))

This constant appears in two nonlinear differential equations
of order 6 and 8. We find a compatibility condition which
factors into(

16(T ′)2 + 3(T ′′)2 − 2T ′T (3)
)(

~2T (4) − 12T ′T ′′
)

= 0[
L3

z (p2
x + p2

y )
]2

= X 3H2,
[
L3

z (p2
x + p2

y )
]2

= (L3
z )2H2,

Exotic Singlet A0 L5
z

We have only one nonlinear differential equation and it can
easily be verified that Weierstrass zeta function is a solution.

L5
z = L3

zX .
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N = 5

Exotic Potentials (Doublets)

We have 3 sets of nonlinear differential equations each of
which involves 2 equations

for (A1,A2)
for (B1,B2)
for (C1,C2) and (F1,F2)[

L4
zpx

]
= Y (3)X , Y (3) =

[
L2

zpx

]
,

[
Y (5)]2 =

[
Y (4)

]2
X , Y (5) =

[
L3

z (p2
x − p2

y )
]
, Y (4) =

[
L2

z (p2
x − p2

y )
]
,

Y (5) =
[
Y (3)

]
H, Y (5) =

[
L2

zpx (p2
x + p2

y )
]
,
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N = 5

New Exotic Potentials for (C1,C2).

There are 2 nonlinear equations of order 6 and 8.

We find a compatibility condition which factors into(
4(T ′)2 + 3(T ′′)2 − 2T ′T (3)

)
Φ(θ) = 0

Φ(θ) is a 4th-order nonlinear equation

After making the change of variables z = tan(3θ) and with
the help of transformation (z ,T (z)) −→ (x ,W (x)) where

z = 2
√

x
√

1−x
1−2x , we arrived the derivative of the first canonical

subcase of the Cosgrove’s master Painlevé equation

T (x) = 3~2

[
W (x)

√
x
√

1− x
+ γ

(1− 2 x)

4
√
x
√

1− x

]
, x ≡

{ cos2[ 3θ
2 ]

sin2[ 3θ
2 ],

with γ = (γ2 + γ4)− (γ1 + γ3) +
√

2 γ1 − 3
4 and

(γ2 + γ3)(γ1 + γ4 −
√

2γ1) = 0.
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Superintegrable Hamiltonians in classical and quantum mechanics
differ. Terms depending on ~ appear in the quantum case. The
classical limit ~→ 0 is singular and must be taken in the
determining equations, not in the solutions.

Two types of potentials occur which we call standard and exotic.
Standard ones are solutions of a linear compatibility condition for
the determining equations. For exotic potentials the linear
compatibility condition is satisfied trivially so the potentials satisfy
nonlinear equations. In quantum mechanics the nonlinear equations
pass the Painlevé test, in the classical case they do not.

The integrals of motion H, X and Y satisfy [H,X ] = [H,Y ] = 0,
[X ,Y ] = C 6= 0, where [·, ·] denotes a Lie bracket in quantum
mechanics and a Poisson bracket in the classical case. Further
commutations like [X ,C ], [Y ,C ], . . . , yield a finite dimensional
polynomial Lie or Poisson algebra. In many cases for N = 2, . . . , 5 it
turns out that the commutators [X ,C ] = D1, [Y ,C ] = D2 are
polynomials in X , Y and H with constant coefficients.
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𝑌𝐼
(𝑁) = 0

EXOTIC POTENTIALS STANDARD POTENTIALS

CLASSICAL

QUANTUM

𝑌𝐼𝐼
(𝑁) = 0

𝑇 𝛳 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑎𝑛 𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐
𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

𝑇𝑇𝑊 𝑆𝑦𝑠𝑡𝑒𝑚

𝑇 𝛳 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑎𝑛 𝑂𝐷𝐸
𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 Painlevé property

𝑇𝑇𝑊 𝑆𝑦𝑠𝑡𝑒𝑚 + 𝑄 𝑆𝑦𝑠𝑡𝑒𝑚

For the standard potentials Y
(N)
II = 0, the TTW and PW systems

are fully contained in the angular component S(θ) ≡ T ′(θ) both in
classical and quantum cases. Moreover, in the quantum case there
exist more potentials, proportional to ~2, which cannot be reduced

to TTW (PW). For the exotic potentials Y
(N)
I = 0, the angular

component S(θ) ≡ T ′(θ) satisfies an algebraic equation in the
classical case and in the quantum case it is given by the solution of
a non-linear ODE that has the Painlevé property.
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