

Geometry and Symmetry in Physics

ISSN 1312-5192

HARMONIC ANALYSIS ON THE EINSTEIN GYROGROUP

MILTON FERREIRA

Communicated by Abraham A. Ungar

Abstract. In this paper we study harmonic analysis on the Einstein gyrogroup of the open ball of \mathbb{R}^n , $n \in \mathbb{N}$, centered at the origin and with arbitrary radius $t \in \mathbb{R}^+$, associated to the generalised Laplace-Beltrami operator

$$L_{\sigma,t} = \left(1 - \frac{\|x\|^2}{t^2}\right) \left(\Delta - \sum_{i,j=1}^n \frac{x_i x_j}{t^2} \frac{\partial^2}{\partial x_i \partial x_j} - \frac{\kappa}{t^2} \sum_{i=1}^n x_i \frac{\partial}{\partial x_i} + \frac{\kappa(2 - \kappa)}{4t^2}\right)$$

where $\kappa=n+\sigma$ and $\sigma\in\mathbb{R}$ is an arbitrary parameter. The generalised harmonic analysis for $L_{\sigma,t}$ gives rise to the (σ,t) -translation, the (σ,t) -convolution, the (σ,t) -spherical Fourier transform, the (σ,t) -Poisson transform, the (σ,t) -Helgason Fourier transform, its inverse transform and Plancherel's Theorem. In the limit of large $t,t\to+\infty$, the resulting hyperbolic harmonic analysis tends to the standard Euclidean harmonic analysis on \mathbb{R}^n , thus unifying hyperbolic and Euclidean harmonic analysis.

Contents

1		22
2	Einstein Addition in the Ball	24
3	The (σ,t) -Translation	27
4	The (σ,t) -Convolution	33
5	Eigenfunctions of $L_{\sigma,t}$	40
6	The (σ,t) -Poisson transform	47
7	The (σ,t) -Helgason Fourier Transform	48
8	Inversion of the (σ,t) -Helgason Fourier Transform and Plancherel's Theorem	50
9	Appendices	55
doi	i:10.7546/jgsp-35-2014-21-60	21