Geometry and Symmetry in Physics ISSN 1312-5192 ## HARMONIC ANALYSIS ON THE EINSTEIN GYROGROUP ## MILTON FERREIRA ## Communicated by Abraham A. Ungar **Abstract.** In this paper we study harmonic analysis on the Einstein gyrogroup of the open ball of \mathbb{R}^n , $n \in \mathbb{N}$, centered at the origin and with arbitrary radius $t \in \mathbb{R}^+$, associated to the generalised Laplace-Beltrami operator $$L_{\sigma,t} = \left(1 - \frac{\|x\|^2}{t^2}\right) \left(\Delta - \sum_{i,j=1}^n \frac{x_i x_j}{t^2} \frac{\partial^2}{\partial x_i \partial x_j} - \frac{\kappa}{t^2} \sum_{i=1}^n x_i \frac{\partial}{\partial x_i} + \frac{\kappa(2 - \kappa)}{4t^2}\right)$$ where $\kappa=n+\sigma$ and $\sigma\in\mathbb{R}$ is an arbitrary parameter. The generalised harmonic analysis for $L_{\sigma,t}$ gives rise to the (σ,t) -translation, the (σ,t) -convolution, the (σ,t) -spherical Fourier transform, the (σ,t) -Poisson transform, the (σ,t) -Helgason Fourier transform, its inverse transform and Plancherel's Theorem. In the limit of large $t,t\to+\infty$, the resulting hyperbolic harmonic analysis tends to the standard Euclidean harmonic analysis on \mathbb{R}^n , thus unifying hyperbolic and Euclidean harmonic analysis. ## **Contents** | 1 | | 22 | |-----|--|----| | 2 | Einstein Addition in the Ball | 24 | | 3 | The (σ,t) -Translation | 27 | | 4 | The (σ,t) -Convolution | 33 | | 5 | Eigenfunctions of $L_{\sigma,t}$ | 40 | | 6 | The (σ,t) -Poisson transform | 47 | | 7 | The (σ,t) -Helgason Fourier Transform | 48 | | 8 | Inversion of the (σ,t) -Helgason Fourier Transform and Plancherel's Theorem | 50 | | 9 | Appendices | 55 | | doi | i:10.7546/jgsp-35-2014-21-60 | 21 |