

Geometry and Symmetry in Physics

ISSN 1312-5192

COMPLEXIFICATION OF THE EXCEPTIONAL JORDAN ALGEBRA AND ITS APPLICATION TO PARTICLE PHYSICS

DANIELE CORRADETTI

Communicated by Vladimir K. Dobrev

Abstract. Recent papers contributed revitalizing the study of the exceptional Jordan algebra $\mathfrak{h}_3(\mathbb{O})$ in its relations with the true Standard Model gauge group G_{SM} . The absence of complex representations of F_4 does not allow $\operatorname{Aut}(\mathfrak{h}_3(\mathbb{O}))$ to be a candidate for any Grand Unified Theories, but the automorphisms of the complexification of this algebra, i.e., $\mathfrak{h}_3^{\mathbb{C}}(\mathbb{O})$, are isomorphic to the compact form of E_6 and similar constructions lead to the gauge group of the minimal left-right symmetric extension of the Standard Model.

MSC:17C40, 17A35, 17C90, 22E70

Keywords: Exceptional Jordan algebra, grand unified theories, standard model, gauge theories

Contents

1	Intr	oduction	2	
2	The	Octonions	2	
	2.1	Normed Division Algebras	2	
	2.2	The Octonions	4	
	2.3	Automorphisms of the Octonions	5	
	2.4	Octonionic Analysis	7	
3	The	Exceptional Jordan Algebras	8	
4	Possible Applications to Particle Physics		9	
	4.1	Minkowsky Spacetime from Jordan Algebras	10	
	4.2	Octonionic Representation of $SU(3)$	11	
	4.3	The Standard Model Gauge Group G_{SM} and $\mathfrak{h}_3(\mathbb{O})$	12	
	4.4	Complexification $\mathfrak{h}_3^\mathbb{C}(\mathbb{O})$ and Fermions Representation $\ \ \ldots \ \ \ldots \ \ \ldots$	14	
	4.5	Conclusions	15	
References			15	