
JGSP 67 (2024) 1–46

ON THE DYNAMICS OF THE SOLAR SYSTEM IV: PERIHELION
PRECESSION AND ECCENTRICITY EVOLUTION

RAMON GONZÁLEZ CALVET

Communicated by Charles-Michel Marle

The perihelion precession rate and the time derivative of the orbital eccentricity are
joined into the derivative of a complex variable being representative of the Runge-
Lenz vector. The integration of the linear differential equation system so obtained
yields the evolution of the perihelion and the eccentricity of all the planets. Each
eccentricity reaches a maximum, and in the case of giant planets also a minimum.
The variation of each semimajor axis is shown to be very small. Since the semi-
major axes are bounded and the planetary orbits never intersect, the stability of the
solar system is proven.
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