

JOURNAL OF

Geometry and Symmetry in Physics

ISSN 1312-5192

PHASE SPACE REPRESENTATIONS OF ZERO-ORDER BESSEL BEAMS AND SUPERIMPOSED ZERO-ORDER BESSEL BEAMS

FRANULFO L. DELA CRUZ, RAPHAEL A. GUERRERO and JOB A. NABLE

Communicated by Vasyl Kovalchuk

In this work, we take advantage of two geometric aspects of phase space representations for optical systems. One aspect involves the geometric representation of the Wigner and the Husimi distribution function in terms of their graphs, hence their visualization, in phase space. The other aspect deals with the Wigner function as a link between Fourier optics and geometric optics. We apply the Wigner function and Husimi function to analyze and come up with representations of Bessel beams, a special class of propagating waves with properties that have been found useful in many applications.

MSC: 78A05, 81S30, 94A12

Keywords: Bessel beam, Husimi function, marginal conditions, superimposed Bessel beams, Wigner function

Contents

1 Introduction		oduction	22
2	Wig	Wigner Distribution Functions	
	2.1	Wigner Distribution Function of the Zero-Order Bessel Beam	26
	2.2	Wigner Distribution Function of Superimposed Zero-Order Bessel Beams	27
3	Marginals		30
	3.1	Marginals of the Zero-Order Bessel Beam	30
	3.2	Marginals of Superimposed Zero-Order Bessel Beams	31
4	Husimi Function		32
	4.1	Husimi Function of the Zero-Order Bessel Beam	32
	4.2	Husimi Function of Superimposed Zero-Order Bessel Beams	33
5	Geo	metric Representations of the Models in Phase Space	35
6	Summary and Conclusions		39
Re	References		
do	doi: 10.7546/jgsp-68-2024-21-41		