

Geometry and Symmetry in Physics

SOLITON HIERARCHIES ASSOCIATED WITH LIE ALGEBRA sp(6)

YANHUI BI, YUQI RUAN, BO YUAN and TAO ZHANG

Communicated by Rutwig Campoamor-Stursberg

In this paper, by selecting appropriate spectral matrices within the loop algebra of symplectic Lie algebra sp(6), we construct two distinct classes of integrable soliton hierarchies. Then, by employing the Tu scheme and trace identity, we derive the Hamiltonian structures of the aforementioned two classes of integrable systems. From these two classes of integrable soliton hierarchies, we select one particular hierarchy and employ the Kronecker product to construct an integrable coupling system.

MSC 2020: 37K10, 34A26, 34C14

Keywords: Hamiltonian structure, Kronecker product, loop algebra, symplectic

Lie algebra, zero curvature equation

Contents

1	Introduction	17
2	Two Soliton Hierarchies Associated with sp(6)	20
	2.1 The First Soliton Hierarchy Associated with sp(6)	. 20
	2.2 The Second Soliton Hierarchy Associated with sp(6)	. 23
3	Integrable Coupling Systems for the Hierarchy of $\mathfrak{sp}(6)$	26
Re	deferences	27

1. Introduction

Soliton theory and integrable systems represent a significant branch of applied mathematics and mathematical physics, characterized by a rich variety of content and research methodologies. On the one hand, soliton equations may be derived through geometric approaches or by employing geometric tools; on the other hand, the algebraic properties of integrable systems can be effectively studied using Lie algebra theory. In recent years, rapid developments in mathematical physics and