

Geometry and Symmetry in Physics

ISSN 1312-5192

RIGOROUS RECONSTRUCTION OF A 3D ROTATIONAL MATRIX FROM ANY FIVE OF ITS ELEMENTS

CLEMENTINA D. MLADENOVA and IVAÏLO M. MLADENOV

Communicated by Gregory L. Naber

In this paper we present a straightforward algorithm that reconstructs the entire three-dimensional rotational matrix from the knowledge of any five of its elements. Additionally, we have demonstrated the application of the proposed scheme via various concrete examples of incomplete matrices.

MSC: 15A90, 17B81, 22E70, 81R05

Keywords: Five-dimensional Hopf parameters, kinematic differential equations, quaternions, Rodrigues' vector, stereographic projection, Tait-Bryan angles

Contents

1	Introduction	49
2	Algorithm and Examples	50
3	Underspecified Cases	50
4	Concluding Remarks	60
References		60

1. Introduction

Rotational matrices in three-dimensional Euclidean space have been of interest since 1776, when Euler showed that these matrices are in fact a three-dimensional manifold and therefore we need to know only three independent elements of the rotational matrix in order to determine it unambiguously. This can be seen as follows. Any 3×3 rotational matrix, which belongs to the special orthogonal group $SO(3,\mathbb{R})$, has nine elements. However, these elements are not independent. According to their very definition

$$\mathcal{R}^t \mathcal{R} = \mathcal{R} \mathcal{R}^t = I_3, \qquad \mathcal{R} \in SO(3, \mathbb{R})$$
 (1)

special orthogonal matrices presented above must satisfy the following set of geometrical constraints.

49