QUANTUM STOCHASTIC PRODUCTS AND THE QUANTUM CONVOLUTION

PAOLO ANIELLO

Dipartimento di Fisica "Ettore Pancini", Università di Napoli "Federico II", and Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
Complesso Universitario di Monte S. Angelo, via Cintia, I-80126 Napoli, Italy

Abstract

A quantum stochastic product is a binary operation on the space of quantum states preserving the convex structure. We describe a class of associative stochastic products, the twirled products, that have interesting connections with quantum measurement theory. Constructing such a product involves a square integrable group representation, a probability measure and a fiducial state. By extending a twirled product to the full space of trace class operators, one obtains a Banach algebra. This algebra is commutative if the underlying group is abelian. In the case of the group of translations on phase space, one gets a quantum convolution algebra, a quantum counterpart of the classical phase-space convolution algebra. The peculiar role of the fiducial state characterizing each quantum convolution product is highlighted.

MSC: 81P15, 81P16, 81R15, 81S30, 43A20, 43A65
Keywords: Convolution algebra, group representation, operator algebra, quantum measurement, quantum state, quantum stochastic product

1. Introduction and Main Ideas

As is well known, operator algebras play a central role in several areas of modern theoretical physics; remarkably, e.g., in quantum mechanics, quantum field theory, non-commutative geometry and quantum statistical mechanics [15, 17]. Quantum states, in particular, can be regarded as normalized positive functionals on the C^{*}-algebra containing all bounded observables $[15,17]$; i.e., the space $\mathcal{B}(\mathcal{H})$ of bounded operators on a separable complex Hilbert space \mathcal{H}, endowed with the usual composition of operators $(A, B) \mapsto A B$ (the algebra product) and with the adjoining map $A \mapsto A^{*}$ (the algebra involution).

