EXAMPLES OF FOUR- OR SIX-DIMENSIONAL SYMPLECTIC-HAANTJES MANIFOLDS AND ABOUT A RELATIONSHIP WITH RECURSION OPERATORS

TSUKASA TAKEUCHI
Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8601, Japan

Abstract

Certain ways of characterizing integrable systems with (1, 1)-tensor field have been investigated, so far. For example, recursion operators and Haantjes operators are known. We show that geometrical examples of fouror six-dimensional symplectic Haantjes manifolds and recursion operators for several Hamiltonian systems. Through these examples, we consider the relation between recursion operators and Haantjes operators.

MSC: 70H06, 37J35
Keywords: Haantjes operator, Hamiltonian system, Lenard-Haantjes chain, recursion operator, symplectic-Haantjes manifold

1. Introduction

Liouville proved that when a system with n degrees of freedom on a $2 n$-dimensional phase space has n independent first integrals in involution the system is integrable by quadratures (cf. [1]).
On the other hand, S. De Filippo, G. Marmo, M. Salerno and G. Vilasi proposed a new characterization of completely integrable Hamiltonian systems. They gave the following theorem. Let X be a dynamical vector field on a $2 n$-dimensional manifold \mathcal{M}. If the vector field X admits a diagonalizable mixed $(1,1)$-tensor field T which is invariant under X, has a vanishing Nijenhuis torsion and has doubly degenerate eigenvalues with nowhere vanishing differentials, then there exist a symplectic structure and a Hamiltonian function H such that the vector field X is separable, Hamiltonian vector field of H, and H is completely integrable with respect to the symplectic structure. The above $(1,1)$-tensor field T is called

