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Abstract. Certain ways of characterizing integrable systems with (1, 1)-ten-
sor field have been investigated, so far. For example, recursion operators and
Haantjes operators are known. We show that geometrical examples of four-
or six-dimensional symplectic Haantjes manifolds and recursion operators
for several Hamiltonian systems. Through these examples, we consider the
relation between recursion operators and Haantjes operators.
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1. Introduction

Liouville proved that when a system with n degrees of freedom on a 2n-dimensio-
nal phase space has n independent first integrals in involution the system is inte-
grable by quadratures (cf. [1]).
On the other hand, S. De Filippo, G. Marmo, M. Salerno and G. Vilasi proposed
a new characterization of completely integrable Hamiltonian systems. They gave
the following theorem. Let X be a dynamical vector field on a 2n-dimensional
manifold M. If the vector field X admits a diagonalizable mixed (1, 1)-tensor
field T which is invariant under X , has a vanishing Nijenhuis torsion and has dou-
bly degenerate eigenvalues with nowhere vanishing differentials, then there exist
a symplectic structure and a Hamiltonian function H such that the vector field
X is separable, Hamiltonian vector field of H , and H is completely integrable
with respect to the symplectic structure. The above (1, 1)-tensor field T is called

263


