

SERIES ON

Geometry, Integrability and Quantization

ISSN 1314-3247

NUMERICAL RANGES OF THE REAL 2×2 MATRICES DERIVED BY FIRST PRINCIPLES

CLEMENTINA D. MLADENOVA 1 AND IVAÏLO M. MLADENOV 1,2

Presented by Ivaïlo M. Mladenov

Here we demonstrate how the very definition of the numerical range leads to its direct geometrical identification. The procedure which we follow can be even slightly refined by making use of the famous Jacobi's method for diagonalization in reverse direction. From mathematical point of view, the Jacobi's idea here is used to reduce the number of the independent parameters from three to two which simplifies significantly the problem. As a surplus we have found an explicit recipe how to associate a Cassinian oval with the numerical range of any real 2×2 matrix. Last, but not least, we have derived their explicit parameterizations.

MSC: 17B81, 22E15, 22E46, 22E70, 81R05

Keywords: Cassinian ovals, enveloping curve, field of values, Jacobi's method for diagonalization, matrix theory, numerical range, parameterization

Contents

1	Introduction	65
2	Numerical Ranges of the Matrices in $Mat(2,\mathbb{R})$	67
3	Jacobi's Rotations – Non-Standard Application	71
4	Jacobi's Rotations – Orthodox Application	72
5	Illustrations – Numerical Ranges of the Matrices in $\mathrm{SL}(2,\mathbb{R})$	74
6	Geometry of the Ellipses Generating the Boundary Curve	76
7	Uniformization of the Cassinian Ovals	78
8	Comment	81
References		81
doi: 10.7546/giq-24-2022-65-83		65