


SERIES ON

Geometry, Integrability and Quantization

ISSN 1314-3247

## ENCODING OPTIMUM OF A QUANTUM KEY DISTRIBUTION MODEL

## GEORGI BEBROV

Communicated by Ivaïlo M. Mladenov

The work reports a general way to evaluate the encoding optimum of a quantum key distribution model. The evaluation is based on the concept of mutual information and compression. A method for evaluating the encoding optimum is proposed. The original point-to-point quantum key distribution model is subjected to this method. It is shown that this model (and probably any existing model) does not reach its encoding optimum.

*MSC*: 68P30, 81P68 *Keywords*: Encoding optimum, quantum key distribution

## Contents

| 1  | Introduction                                             | 1                  |
|----|----------------------------------------------------------|--------------------|
| 2  | Quantum Key Distribution                                 | 2                  |
| 3  | Encoding Optimum   3.1 Proposed Method   3.2 Application | <b>4</b><br>4<br>8 |
| 4  | Summary                                                  | 9                  |
| Re | References                                               |                    |

## 1. Introduction

The principles of quantum mechanics [15] (as well as those of special relativity [5]) are the only tools that could be used to construct a key distribution system (or model, or process) being information-theoretically secure (confidential). An example of such a model is the so-called *quantum key distribution* (QKD) [1, 13]. It is based on the impossibility of third parties (eavesdroppers) to extract information out of the communication process without disturbing it. Several prominent QKD